Intrinsic Conductivity in Sodium−Air Battery Discharge Phases: Sodium Superoxide vs Sodium Peroxide
نویسندگان
چکیده
The primary discharge product in sodium−air batteries has been reported in some experiments to be sodium peroxide, Na2O2, while in others sodium superoxide, NaO2, is observed. Importantly, cells that discharge to NaO2 exhibit low charging overpotentials, while those that discharge to Na2O2 do not. These differences could arise from a higher conductivity within the superoxide; however, this explanation remains speculative given that charge transport in superoxides is relatively unexplored. Here, density functional and quasi-particle GW methods are used to comparatively assess the conductivities of Na−O2 discharge phases by calculating the concentrations and mobilities of intrinsic charge carriers in Na2O2 and NaO2. Both compounds are predicted to be electrical insulators, with bandgaps in excess of 5 eV. In the case of sodium peroxide, the transport properties are similar to those reported previously for lithium peroxide, suggesting low bulk conductivity. Transport in the superoxide has some features in common with the peroxide but also differs in important ways. Similar to Na2O2, NaO2 is predicted to be a poor electrical conductor, wherein transport is limited by sluggish charge hopping between O2 dimers. Different from Na2O2, in NaO2 this transport is mediated by a combination of electron and hole polarons. An additional distinguishing feature of the superoxide is its ionic conductivity, which is 10 orders of magnitude larger than the electronic component. The ionic component is comprised primarily of p-type contributions from (surprisingly mobile) oxygen dimer vacancies, and from ntype contributions from negative sodium vacancies. In the context of sodium−air batteries, the low electronic conductivity afforded by NaO2 suggests that enhanced bulk transport within this phase is unlikely to account for the low overpotentials associated with its decomposition. Rather, the enhanced efficiency of NaO2-based cells should be attributed to other factors, such as a reduced tendency for electrolyte decomposition.
منابع مشابه
Dissolution and ionization of sodium superoxide in sodium–oxygen batteries
With the demand for high-energy-storage devices, the rechargeable metal-oxygen battery has attracted attention recently. Sodium-oxygen batteries have been regarded as the most promising candidates because of their lower-charge overpotential compared with that of lithium-oxygen system. However, conflicting observations with different discharge products have inhibited the understanding of precise...
متن کاملA rechargeable room-temperature sodium superoxide (NaO2) battery.
In the search for room-temperature batteries with high energy densities, rechargeable metal-air (more precisely metal-oxygen) batteries are considered as particularly attractive owing to the simplicity of the underlying cell reaction at first glance. Atmospheric oxygen is used to form oxides during discharging, which-ideally-decompose reversibly during charging. Much work has been focused on ap...
متن کاملA Safer Sodium‐Ion Battery Based on Nonflammable Organic Phosphate Electrolyte
Sodium-ion batteries are now considered as a low-cost alternative to lithium-ion technologies for large-scale energy storage applications; however, their safety is still a matter of great concern for practical applications. In this paper, a safer sodium-ion battery is proposed by introducing a nonflammable phosphate electrolyte (trimethyl phosphate, TMP) coupled with NaNi0.35Mn0.35Fe0.3O2 catho...
متن کاملNanoscale Stabilization of Sodium Oxides: Implications for NaO<sub>2</sub> Batteries
The thermodynamic stability of materials can depend on particle size due to the competition between surface and bulk energy. In this Letter, we show that, while sodium peroxide (Na2O2) is the stable bulk phase of Na in an oxygen environment at standard conditions, sodium superoxide (NaO2) is considerably more stable at the nanoscale. As a consequence, the superoxide requires a much lower nuclea...
متن کاملSolvent‐Mediated Control of the Electrochemical Discharge Products of Non‐Aqueous Sodium–Oxygen Electrochemistry
The reduction of dioxygen in the presence of sodium cations can be tuned to give either sodium superoxide or sodium peroxide discharge products at the electrode surface. Control of the mechanistic direction of these processes may enhance the ability to tailor the energy density of sodium-oxygen batteries (NaO2 : 1071 Wh kg(-1) and Na2 O2 : 1505 Wh kg(-1) ). Through spectroelectrochemical analys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015